Telegram Group & Telegram Channel
https://www.economist.com/technology-quarterly/2020/06/11/the-cost-of-training-machines-is-becoming-a-problem

The growing demand for computing power has fuelled a boom in chip design and specialised devices that can perform the calculations used in AI efficiently. The first wave of specialist chips were graphics processing units (GPUs), designed in the 1990s to boost video-game graphics. As luck would have it, GPUs are also fairly well-suited to the sort of mathematics found in AI.

Further specialisation is possible, and companies are piling in to provide it. In December, Intel, a giant chipmaker,
bought Habana Labs, an Israeli firm, for $2bn. Graphcore, a British firm founded in 2016, was valued at $2bn in 2019. Incumbents such as Nvidia, the biggest GPU-maker, have reworked their designs to accommodate AI. Google has designed its own “tensor-processing unit” (TPU) chips in-house. Baidu, a Chinese tech giant, has done the same with its own “Kunlun” chips. Alfonso Marone at KPMG reckons the market for specialised AI chips is already worth around $10bn, and could reach $80bn by 2025.

“Computer architectures need to follow the structure of the data they’re processing,” says Nigel Toon, one of Graphcore’s co-founders. The most basic feature of AI workloads is that they are “embarrassingly parallel”, which means they can be cut into thousands of chunks which can all be worked on at the same time. Graphcore’s chips, for instance, have more than 1,200 individual number-crunching “cores”, and can be linked together to provide still more power. Cerebras, a Californian startup, has taken an extreme approach. Chips are usually made in batches, with dozens or hundreds etched onto standard silicon wafers 300mm in diameter. Each of Cerebras’s chips takes up an entire wafer by itself. That lets the firm cram 400,000 cores onto each.

Other optimisations are important, too. Andrew Feldman, one of Cerebras’s founders, points out that AI models spend a lot of their time multiplying numbers by zero. Since those calculations always yield zero, each one is unnecessary, and Cerebras’s chips are designed to avoid performing them. Unlike many tasks, says Mr Toon at Graphcore, ultra-precise calculations are not needed in AI. That means chip designers can save energy by reducing the fidelity of the numbers their creations are juggling. (Exactly how fuzzy the calculations can get remains an open question.)

All that can add up to big gains. Mr Toon reckons that Graphcore’s current chips are anywhere between ten and 50 times more efficient than GPUs. They have already found their way into specialised computers sold by Dell, as well as into Azure, Microsoft’s cloud-computing service. Cerebras has delivered equipment to two big American government laboratories.



tg-me.com/pdp11ml/248
Create:
Last Update:

https://www.economist.com/technology-quarterly/2020/06/11/the-cost-of-training-machines-is-becoming-a-problem

The growing demand for computing power has fuelled a boom in chip design and specialised devices that can perform the calculations used in AI efficiently. The first wave of specialist chips were graphics processing units (GPUs), designed in the 1990s to boost video-game graphics. As luck would have it, GPUs are also fairly well-suited to the sort of mathematics found in AI.

Further specialisation is possible, and companies are piling in to provide it. In December, Intel, a giant chipmaker,
bought Habana Labs, an Israeli firm, for $2bn. Graphcore, a British firm founded in 2016, was valued at $2bn in 2019. Incumbents such as Nvidia, the biggest GPU-maker, have reworked their designs to accommodate AI. Google has designed its own “tensor-processing unit” (TPU) chips in-house. Baidu, a Chinese tech giant, has done the same with its own “Kunlun” chips. Alfonso Marone at KPMG reckons the market for specialised AI chips is already worth around $10bn, and could reach $80bn by 2025.

“Computer architectures need to follow the structure of the data they’re processing,” says Nigel Toon, one of Graphcore’s co-founders. The most basic feature of AI workloads is that they are “embarrassingly parallel”, which means they can be cut into thousands of chunks which can all be worked on at the same time. Graphcore’s chips, for instance, have more than 1,200 individual number-crunching “cores”, and can be linked together to provide still more power. Cerebras, a Californian startup, has taken an extreme approach. Chips are usually made in batches, with dozens or hundreds etched onto standard silicon wafers 300mm in diameter. Each of Cerebras’s chips takes up an entire wafer by itself. That lets the firm cram 400,000 cores onto each.

Other optimisations are important, too. Andrew Feldman, one of Cerebras’s founders, points out that AI models spend a lot of their time multiplying numbers by zero. Since those calculations always yield zero, each one is unnecessary, and Cerebras’s chips are designed to avoid performing them. Unlike many tasks, says Mr Toon at Graphcore, ultra-precise calculations are not needed in AI. That means chip designers can save energy by reducing the fidelity of the numbers their creations are juggling. (Exactly how fuzzy the calculations can get remains an open question.)

All that can add up to big gains. Mr Toon reckons that Graphcore’s current chips are anywhere between ten and 50 times more efficient than GPUs. They have already found their way into specialised computers sold by Dell, as well as into Azure, Microsoft’s cloud-computing service. Cerebras has delivered equipment to two big American government laboratories.

BY PDP-11🚀




Share with your friend now:
tg-me.com/pdp11ml/248

View MORE
Open in Telegram


PDP 11 Telegram | DID YOU KNOW?

Date: |

However, analysts are positive on the stock now. “We have seen a huge downside movement in the stock due to the central electricity regulatory commission’s (CERC) order that seems to be negative from 2014-15 onwards but we cannot take a linear negative view on the stock and further downside movement on the stock is unlikely. Currently stock is underpriced. Investors can bet on it for a longer horizon," said Vivek Gupta, director research at CapitalVia Global Research.

A Telegram spokesman declined to comment on the bond issue or the amount of the debt the company has due. The spokesman said Telegram’s equipment and bandwidth costs are growing because it has consistently posted more than 40% year-to-year growth in users.

PDP 11 from us


Telegram PDP-11🚀
FROM USA